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Abstract. We study the temporal evolutions of three stock markets; Standard and Poor’s 500 index, Nikkei
225 Stock Average, and the Korea Composite Stock Price Index. We observe that the probability density
function of the log-return has a fat tail but the tail index has been increasing continuously in recent years.
We have also found that the variance of the autocorrelation function, the scaling exponent of the standard
deviation, and the statistical complexity decrease, but that the entropy density increases as time goes over
time. We introduce a modified microscopic spin model and simulate the model to confirm such increasing
and decreasing tendencies in statistical quantities. These findings indicate that these three stock markets
are becoming more efficient.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.70.+c Infor-
mation theory and communication theory – 89.75.Fb Structures and organization in complex systems

1 Introduction

Econophysics is one of the most active fields in interdisci-
plinary research [1–19]. Among the many topics of inter-
est to econophysics, the market efficiency of various stock
markets has been actively studied [15–21]. The market is
said to be efficient if all available information is instantly
processed when it reaches the market and is immediately
reflected in price adjustments of the assets traded. The
efficient market hypothesis is that a market is assumed
to be an efficient market [22–24]. Samuelson [25] explic-
itly formulated the efficient market hypothesis by demon-
strating the price process as a stochastic process called a
martingale. In an efficient market, price changes are un-
predictable from the previous time series. Therefore, the
autocorrelation of price changes has to be negligible and
their probability distributions are given by Gaussian dis-
tribution. However, empirical evidences from a number of
real markets do not support the efficient market hypoth-
esis [20,21].

There are many methodologies to analyze financial
time series. Observing the probability density functions
(PDFs) of the log-return is one of the simplest and most
popular methods. Many papers have already been pub-
lished studying the PDFs of the log-return in stock mar-
kets [11–15,26,27]. Especially, the different characteristics
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between of mature markets and emerging markets [12],
the relations between the shape of distributions and time
lags [13], market efficiencies [15] and criteria between
bubble and anti-bubble [9,11] in the financial markets,
have been studied by using the PDFs of the log-return.
Another method is computational mechanics [28]. Com-
putational mechanics has been used in various fields of
science [29–31], including stock markets [18,19]. Compu-
tational mechanics enables us to analyze the complexity
and structure in financial markets quantitatively by find-
ing causal structures of the time series [32].

Agent based modeling has also been widely used in
the social sciences and econophysics. Agent based mod-
els in econophysics have been constructed by using agents
clustering [1], Ising-like spin models [2,15], and Potts-like
spin models [4]. Simulations on these microscopic agent
based models have been performed to explain the shapes
of the PDFs depending on traders’ characteristics [11] and
information flows [15], and speculative activities for bub-
bles and crashes in stock markets [5]

In this paper, we analyze the time series of Standard
and Poor’s 500 Index (S&P 500), the Korean Composite
Stock Price Index (KOSPI), and the Nikkei 225 Stock Av-
erage (NIKKEI) by using the PDFs, the autocorrelation
function, the standard deviation, the statistical complex-
ity, and the entropy density of the log-return on these
three stock markets. We then introduce and simulate a
modified microscopic spin model for the financial markets
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to compare with the results obtained from the empirical
data.

2 Empirical data and analysis

We use high frequency (1 min) S&P 500 data for the pe-
riod of 1983–2006, KOSPI data (1992–2003), and NIKKEI
data (1997–2005). S&P 500 and NIKKEI data repre-
sent mature markets while the KOSPI data represent an
emerging market. We use only intra-day data to exclude
the discontinuity jumps between the previous day’s closing
price and the next day’s opening price due to overnight
effects. In the computations we use the log-return defined
as the change in the logarithm price as follows with the
time lag ∆t:

S∆t(t) ≡ log Y (t + ∆t)− log Y (t), (1)

where Y (t) is the price of the stock at time t.

2.1 Probability density function

It is broadly assumed that price changes in an efficient
market cannot be predicted because the price changes
randomly. Assuming the price change to be a random
multiplicative process, the probability density functions
then take the form of Gaussian distribution. However,
the distributions of the log-return are found to be non-
Gaussian [13,15,26,27,33]. Empirically, the tails part of the
PDFs are wider and the centers of the PDFs are sharper
than a Gaussian distribution. It has been reported that
the PDFs in mature markets have a power-law tail, while
emerging markets have an exponential tail [12,14]. The
PDFs also vary with time lag. Price changes have a power-
law distribution for a short time lag, and an exponential
distribution when the time lag is long. Moreover, for a
long time lag, the distribution becomes Gaussian [13,33].

Figure 1a shows the PDFs of S&P 500 log-returns from
1998 to 2005. The shape of the distribution in 1998 in
Figure 1a is close to the Lévy distribution and the tail part
shows a power-law distribution. However, the shape of the
PDFs in the 2000s becomes narrower and the shape of tail
part becomes thinner, indicating an obvious change from
the Lévy distribution to the exponential distribution. The
same behaviors are also observed for KOSPI and NIKKEI
data.

This phenomena can be confirmed by the increasing
behavior of the tail index, defined as a power-law expo-
nent of the tail part of the PDFs. Figure 1b shows the
temporal evolutions of tail index in the PDFs for the S&P
500, KOSPI, and NIKKEI, respectively. The tail index of
the three stock markets increases from 1999 to 2003. It
is well known that the shape of PDFs depends on the
time lag [13,33,34]. Therefore, we can conjecture that the
change of the shape of PDFs is related with the change of
effective time lag. Because of the improvement of infra for
information flow, effective time is becoming shorter over
time. To confirm this, in the next subsections we discuss

(a)

(b)

Fig. 1. (a) The PDFs of the log-return for the S&P 500: �
1998, © 1999, � 2001, and � 2005. (b) Temporal evolutions
of the tail index for the S&P 500, KOSPI, and NIKKEI.

the autocorrelation function and the standard deviation
to measure long range correlations, and the entropy den-
sity and the statistical complexity to measure randomness
(or regularity) in the three stock markets.

Tail index is obtained by the least square fitting of
the PDFs. The error bars in the figure are asymptotic
standard error. We use the χ2 test to test if a sample of
data comes from a population with a power law distri-
bution [10]. For example, the test statistic χ2 is 21.91,
and the degree of freedom is 25 for the S&P 500 in 2005.
Therefore, the null hypothesis of the power-law tail of the
log-return distribution may be accepted with 0.100 of sig-
nificance level.

2.2 Autocorrelation function and standard deviation

We consider the variance of autocorrelation function to be
defined as

VACF = 〈R(τ)2〉τ , (2)

where the autocorrelation function is defined by

R(τ) =
〈S1(t)S1(t + τ)〉t

σ2
, (3)
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and σ is the standard deviation of S(t) (see Eq. (4)). In
equations (2) and (3), 〈. . .〉τ (or t) means an average for
τ (or t) over the period.

When the time series of the log-return in the stock
markets have long range correlations, VACF has non-zero
value, while it approaches zero if there is no correlations.
Figure 2a shows the temporal evolution of VACF which de-
creases to zero for all three stock markets. VACF begins to
decrease through 1998 and 1999, and becomes almost zero
after 1999 for the S&P 500 and NIKKEI, while VACF de-
creases over many more years and approaches zero in 2001
for the KOSPI. After 2001, VACF approaches zero for all
three stock markets, meaning that correlations have di-
minished recently. Therefore, the three stock markets have
become more random and market efficiency has increased
recently compared with previous years.

We also investigate long range correlations by observ-
ing the standard deviation of the log-return [8] defined as

σ(∆t) =

√∑n
i=1 (log Y (ti + ∆t)− log Y (ti))

2

√
n− 1

, (4)

where n is the number of entries in the log-return data and
its value is approximately 105 for each year. The standard
deviation then exhibits the following power-law behavior

σ(∆t) ∼ ∆tµ. (5)

There is a long range correlation if µ is larger than 0.5, no
correlation at µ = 0.5 , and an anti-correlation for µ < 0.5.
The strength of the long range correlations is seen to be
larger for less efficient financial markets.

Figure 2b shows the temporal evolutions of µ obtained
from the least square fitting of equation (5), and the error
bars represent the standard error of empirical data from
the fitted equations. The value of µ for S&P 500 data de-
creases continuously and eventually approaches 0.5, mean-
ing that long range correlations tend to disappear as
time goes over time. These decreasing tendencies of the
time evolutions of µ show that the stock market becomes
more efficient. We also observe the same tendency for the
KOSPI and NIKKEI.

We use the χ2 test to test whether the fitting value of
µ is reliable. For example, the p-value for the S&P 500 in
2005 is smaller than 0.0001.

2.3 Entropy density and statistical complexity

We also analyze the temporal evolutions of the statistical
complexity and the entropy density, by using the causal-
state splitting reconstruction algorithm [28] to model the
ε-machine. We first change the original data Y (t) into the
binary time series F (t) as follows:

F (t) ≡ θ(Y (t + ∆t)− Y (t)), (6)

where θ(x) is a Heaviside step function and ∆t is the time
interval which is set to one minute. Then the original data

(a)

(b)

Fig. 2. Time evolutions of (a) variance of the autocorrelation
functions and (b) scaling exponents of the standard deviation.

Y (t) are changed into the binary time series F (t) with a
countable set A = {0, 1}, where F (t) is 0 (or 1) when the
next index has decreased (or increased).

Next, the probability distribution of a block of L con-
secutive random variables XL = Xi, . . . , Xi+L−1 is taken
as the set of joint probabilities of L consecutive values
Pr(xL) = Pr(xi, . . . , xi+L−1) for all 2L possibilities. Then
the Shannon entropy [35] for the above L block variable
XL is defined as

H(L) = −
∑

x1∈A

· · ·
∑

xL∈A

Pr(x1, ..., xL) log2 Pr(x1, ..., xL),

(7)
which measures the uncertainty or randomness in the bi-
nary time series F (t). H(L) may diverge as L goes to
infinity, because H(L) is a monotonically increasing func-
tion of L. Therefore, it is more convenient to introduce
the following entropy density

h ≡ lim
L→∞

H(L)
L

. (8)

The entropy density for the finite length L can also be
written as a function of block length L as follows;

h(L) ≡ H(L)−H(L− 1). (9)
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If L is not large enough to fully detect the structure from
the time series, h would overestimate the randomness of
time series. Therefore, h(L) converges to h as L increases.
In this paper, we set to L = 7 which is large enough
because h(L = 7) ≈ h(L > 7).

To calculate the statistical complexity, the ε-machine
has to be defined. An infinite string X

↔
= . . .X−1X0X1 . . .

can be divided into two semi-infinite parts such as a future
X
→

and a history X
←

, where each Xi may take a symbol
xi drawn from a finite countable set A. Then, a causal
state is defined as a set of histories that have the same
conditional probabilities for all possible future events. ε
is a function that maps each history to a corresponding
causal state ε(←−x ),

ε(x
←

) = {x′← | Pr(
−→
X = −→x | X← = x

←
)

= Pr(
−→
X = −→x | X← = x′←), ∀−→x ∈ F}. (10)

Then, the transition probability T
(a)
ij denotes the probabil-

ity of generating a symbol a ∈ A when making a transition
from state si to state sj [36,37]:

T
(a)
ij ≡ Pr(

←−
Xa ∈ sj | ←−X ∈ si). (11)

The function ε mapping histories to causal states and
the labelled transition probabilities T

(a)
ij constitute an

ε-machine [36], which represents the computational me-
chanics underlying a given time series.

From the constructed ε-machine, the probability of
finding the system in the ith causal state after the
ε-machine has been running infinitely for each i, Pr(si),
can be calculated. The components Tij of the transition
matrix T =

∑
a∈A T

(a)
ij give the probability of a transition

from state si to state sj . Pr(si) is obtained by solving
∑

i

Pr(si)Tij = Pr(sj), (12)

and the statistical complexity is defined as

C ≡ −
∑
{i}

Pr(si) log2 Pr(si). (13)

Figure 3 shows the temporal evolutions of the statistical
complexity and the entropy density with L = 7 . The sta-
tistical complexity of the S&P 500 data decreases contin-
uously and approaches near 1 or 2 as time goes over time.
The time series is considered to become random when the
statistical complexity approaches zero.

To support whether the time series is random or not,
we also analyze the temporal evolutions of the entropy
density. The time series is considered to be regular if the
entropy density comes close to zero, and to be random
if the entropy density fluctuates around 1. As shown in
Figure 3b, the entropy density becomes close to 1 after
the 1990s for the S&P 500 and after the 2000s for the
KOSPI, while convergency to 1 can not be observed from
the NIKKEI due to shortage of data. Though the increas-
ing tendency for the entropy density exists in the S&P 500,

(a)

(b)

Fig. 3. Temporal evolutions of (a) the statistical complexity
and (b) the entropy density.

it is very weak compared with that of the KOSPI. Hence,
we calculate the deviation of the original data from the
shuffled data. The deviation between the data and the
shuffled data is 7.1 × 10−4, 7.4 × 10−3, and 7.5 × 10−4

for the S&P 500, KOSPI, and NIKKEI, respectively. For
the S&P 500 and NIKKEI, the deviation is smaller than
that of the KOSPI. Moreover, the fluctuation of the en-
tropy density in the mid and late 1990s due to the Asian
financial crisis is large, while the statistical complexity is
relatively solid compared with the entropy density. From
this result, we can conclude that the entropy density is
more susceptible to fluctuation in the market and it is
hard to verify the trend using the entropy density. The
statistical complexity is obtained from the causal states
which are calculated by the relation with history of time
series stated in equation (10), while the entropy density
is the simple probability of configuration of time series.
For this reason, the entropy density has the more sus-
ceptible property. The original nature of market efficiency
is not changed by a shock such as a financial crisis be-
cause it is more closely related with the infrastructure for
circulation of information in the market. In brief, from
temporal evolutions of the statistical complexity and the
entropy density, we can conclude that the time series of
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these three stock markets are growing more random and
thus the stock markets are becoming more efficient.

3 The modified model and simulations

As an attempt to account for the observed phenomena,
we consider and modify the microscopic spin model [2] of
many interacting agents (spins). In the model, agents in
the stock market are represented by spins and, interac-
tions between agents and external informations are rep-
resented by local fields. This model displays probability
distributions of the log-return resembling those of empiri-
cal financial time series if the model parameters are chosen
properly.

We consider i = 1, 2, . . . , N agents with orientations
σi(t) = ±1, corresponding to the decision to buy (+1) or
sell (−1) a stock at discrete time-steps t. The orientation
of the agent i at time t + 1, depends on the local field,

Ii(t) =
1
N

∑
j

Aij(t)σj(t) + hi(t), (14)

where Aij(t) represents time-dependent interaction
strength among agents, and hi(t) is an external field
reflecting the effects of environment. The interaction
strength is Aij(t) = Aξ(t) + aηij(t), where ξ(t) and ηij(t)
are determined randomly in every step. A is an average
interaction strength between agents and a is a deviation of
the individual interaction strengths from the average. The
external field is hi(t) = hζi(t), where h is an information
diffusion factor and ζi(t) is a random variable influencing
the ith agent at time t. The average interaction strength
Aξ(t) represents the average reaction of agents to price
changes. The terms aηij(t) describes the fluctuating inter-
action while hζi(t) describe the fluctuating environment.

From the above local field, the orientation of agents in
the next step is determined by

σi(t + 1) =
{

+1 with probability p
−1 with probability 1− p,

(15)

where p = 1/(1 + exp{−2Ii(t)}). In this microscopic spin
model, the log-return of price changes at time t is given by

S(t) =
1
N

∑
σi(t). (16)

We now want to modify the local field (Eq. (14)) in or-
der to adjust the agent’s strategy on stock exchange, de-
pending on the market log-return and the anticipated log-
return. We introduce the anticipated log-return of the ith
agent Sant

i (t), which is equal to p× (+1) + (1− p)× (−1)
with the given local field on the ith agent, leading to

Sant
i (t) = tanh Ii(t). (17)

The orientation of the ith agent at time t+1 then depends
on the following local field with the adjustment

Iadj
i (t) = Ii(t) + α

[
S(t− 1)− Sant

i (t− 1)
]
, (18)

(a) (b)

(c) (d)

Fig. 4. Dependencies of the value of α; (a) variance of the
autocorrelation function, (b) scaling exponent of the standard
deviation, (c) the statistical complexity, and (d) the entropy
density.

where α ≥ 0 is the degree of adjustment. For α = 0 agents
determine their opinions from Ii(t) without any adjust-
ment. When α is non-zero, agents determine their opinions
from Iadj

i (t) by considering the market log-return and the
anticipated log-return. Agents now adjust their opinions
by adding or subtracting the difference between the mar-
ket price changes and the anticipated price changes. The
orientation of agents in the next step is now determined
by the adjusted local field Iadj

i (t) rather than Ii(t).
We simulate this modified model with N = 1000 and

values of ξ(t) , ηij(t) and ζi(t) generated within the range
[–1, 1]. We then compute the autocorrelation function, the
standard deviation, the statistical complexity and the en-
tropy density as a function of the degree of adjustment α.

Figure 4 shows the dependence of four statistical quan-
tities on the value of α. As α decreases from 1 to 0, the
variance of the autocorrelation function decreases to 0
(Fig. 4a), the scaling exponent of the standard deviation
decreases to 0.5 (Fig. 4b), the statistical complexity de-
creases to 0 (Fig. 4c), and the entropy density increases to
become 1 (Fig. 4d). These decreasing and increasing ten-
dencies are exactly the same as those obtained from the
empirical data for the three stock markets. All findings
thus support that the stock markets are becoming more
efficient.

4 Conclusions

We have studied the time series of stock exchanges us-
ing Standard and Poor’s 500 Index, the Nikkei 225 Stock
Average, and the Korea composite Stock Price Index. We
first analyze the temporal evolutions of the probability
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density function. The PDFs of the log-returns have a fat
tail and the tail index is not stationary but increases after
the late 1990s.

In order to confirm whether the stock markets become
more efficient or not, we have studied the four well-known
quantities; the autocorrelation function, the standard de-
viation, the statistical complexity, and the entropy density
for the three markets. As time moves over recent years,
the variance of the autocorrelation function decreases and
approaches zero, the scaling exponent of the standard de-
viation continuously decreases and eventually approaches
0.5, the statistical complexity decreases and approaches
to near zero, and the entropy density fluctuates around 1.
All these results are consistent with increasing market ef-
ficiency as the time series become more random, though
the entropy density has some problems: not representing
the increasing trend clearly for the S&P 500 and NIKKEI,
and very susceptible against fluctuation of time series.

We also introduce and simulate the modified micro-
scopic spin model to compare with our findings on the
empirical data. All simulations for the same statistical
quantities show the identical decreasing and increasing be-
haviors to support our findings on the empirical data.

In the modified model, the stock market is said to be ef-
ficient depending on the degree of adjustment, α. When α
is non-zero, the agents adjust their opinions for the stock
exchange in the next step. Previously (before 2000), in-
formation got around slowly and the market was less effi-
cient so the adjusting behavior was more effective. When
α is zero, however, the adjusting behavior is no longer
valid so that the agents cannot profit through superior-
ity of information. At present information flow becomes
faster and more even because of the rapid development
of communication-infra through high speed internet, mo-
bile technologies, and world-wide broadcasting systems.
We thus expect contemporary the present stock markets
to become more efficient than past markets, confirming the
efficient market hypothesis, where a market is efficient if
all information is instantly delivered and rapidly reflected
by the market prices.

We would like to thank Hang-Hyun Jo for helpful discussions.
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